Determining the Phosphate Content in Fertilizers

Introduction:

Fertilizers are widely used to improve the growth of crops. Many of these fertilizers contain phosphates. This experiment will determine the amount of phorous present as phosphate.

Purpose:

The purpose of this experiment is to determine the amount of phosphorous present in a soluble fertilizer in the form of the phosphate ion.

Equipment/ Materials

HACH kit and supplies for the Phosphorus, Reactive (Orthophosphate) test (number 490)

10 mL sample cells PhosVer3 phosphate Powder Pillow Standard phosphate solution Na₃PO₄·12H₂O 50.0 mg/L Volumetric flasks (25 mL) Pipet (10 mL) Pipet bulb Kim wipes Automatic pipet adjustable Solutions of fertilizers containing phosphate

Safety:

Wear an apron and goggles

Procedure:

- 1. Use the 50 mg/L Standard solution to prepare 25 mL of standards containing 2.4 mg/L, 1.0 mg/L, 0.75 mg/L and 0.5 mg/L of phosphate. Also prepare a blank. The blank in this case is a 10 mL sample cell of distilled water.
- 2. Measure the concentration of each of these standards using the DR 2400 from the HACH kit.
 - a. Touch favorite programs
 - b. Select program 490 P React. PV
 - c. Touch Start
 - d. Fill a round 10 mL sample cell with 10 mL of a standard
 - e. Add the contents of one PhosVer 3 phosphate Powder Pillow to the standard. Immediately cap and invert to mix. This becomes the prepared sample
 - f. Touch the clock in the lower left side of the screen. This is the timer icon.
 - g. Touch Start. The clock begins to count down as a two-minute reaction period is started. Place the prepared sample vial on the lab table.

- h. Wipe the blank and place it into the cell holder.
- i. When the timer beeps, Touch Zero. The display will show 0.0 $mg/L PO_4^{3-}$.
- j. Within one minute after the timer beeps, (indicating completion of the Zero reading), wipe the prepared sample and place it into the cell holder.
- k. Touch Read.
- 1. Results will appear in mg/L PO_4^{3-} . Record data
- m. Repeat until all standards have been measured. Record data.
- 3. Obtain a sample of fertilizer solution
- 4. Repeat step 2 using the fertilizer solution. Record data
- 5. Repeat step 2 using additional fertilizers. Record data

Data:

Standards epared Concentration (1

Prepared Concentration (mg/L)	HACH meter reading (mg/L)
2.4	
1.0	
0.75	
0.5	

Fertilizer

Kind of fertilizer used

HACH meter reading _____

Kind of fertilizer used _____

HACH meter reading _____

Kind of fertilizer used _____

HACH meter reading _____

Calculations:

1. Using the equation $C_1V_1 = C_2V_2$, calculate the volume of 50.0 mg/L PO₄³⁻ solution needed to prepare 25 mL of a solution containing 2.4 mg/L PO₄³⁻

- 2. Using the equation $C_1V_1 = C_2V_2$, calculate the volume of 50.0 mg/L PO₄³⁻ solution needed to prepare 25 mL of a solution containing 1.0mg/L PO₄³⁻
- 3. Using the equation $C_1V_1 = C_2V_2$, calculate the volume of 50.0 mg/L N solution needed to prepare 25 mL of a solution containing 0.75 mg/L PO_4^{3-}
- 4. Using the equation $C_1V_1 = C_2V_2$, calculate the volume of 50.0 mg/L PO4³⁻ solution needed to prepare 25 mL of a solution containing 0.50 mg/L PO4³⁻ PO4³⁻
- 5. Graph your data. Plot the prepared concentrations on the x axis and the HACH meter readings on the Y axis
- 6. Using the calibration curve constructed above and the HACH meter reading, calculate the concentration of PO_4^{3-} in your fertilizer.

Questions

- 1. Why was a calibration curve constructed.?
- 2. List three errors that would cause phosphate readings to be too low.
- 3. List two errors that would cause phosphate readings to be too high.